
Noncommutative integrability on noncompact invariant manifolds

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2006 J. Phys. A: Math. Gen. 39 14035

(http://iopscience.iop.org/0305-4470/39/45/011)

Download details:

IP Address: 171.66.16.106

The article was downloaded on 03/06/2010 at 04:55

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/39/45
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 39 (2006) 14035–14042 doi:10.1088/0305-4470/39/45/011

Noncommutative integrability on noncompact
invariant manifolds

E Fiorani1 and G Sardanashvily2

1 Department of Mathematics and Informatics, University of Camerino, 62032 Camerino (MC),
Italy
2 Department of Theoretical Physics, Moscow State University, 117234 Moscow, Russia

Received 10 May 2006, in final form 25 September 2006
Published 24 October 2006
Online at stacks.iop.org/JPhysA/39/14035

Abstract
The Mishchenko–Fomenko theorem on noncommutative completely integrable
Hamiltonian systems on a symplectic manifold is extended to the case of
noncompact invariant submanifolds.

PACS numbers: 45.20.Jj, 02.30.Ik

1. Introduction

We are concerned with the classical theorems on Abelian and noncommutative integrability of
Hamiltonian systems on a symplectic manifold. These are the Liouville–Arnold theorem
on Abelian completely integrable systems (henceforth CIS) [1, 2, 26], the Poincaré–
Lyapounov–Nekhoroshev theorem on Abelian partially integrable systems [17, 31, 32] and
the Mishchenko–Fomenko one on nocommutative CISs [14, 25, 30]. These theorems state the
existence of (generalized) action–angle coordinates around a compact invariant submanifold,
which is a torus. However, there is a topological obstruction to the existence of global action–
angle coordinates [10, 11]. The Liouville–Arnold and Nekhoroshev theorems have been
extended to noncompact invariant submanifolds, which are toroidal cylinders [15, 16, 22, 38].
In particular, this is the case of time-dependent CISs [21, 23]. Any time-dependent CIS of
m degrees of freedom can be represented as an autonomous one of m + 1 degrees of freedom
on a homogeneous momentum phase space, where time is a generalized angle coordinate.
Therefore, we further consider autonomous CISs.

Our goal here is the following generalization of the Mishchenko–Fomenko theorem to
noncommutative CISs whose invariant submanifolds need not be compact.

Theorem 1. Let (Z,�) be a connected symplectic 2n-dimensional real smooth manifold
and (C∞(Z), {, }) the Poisson algebra of smooth real functions on Z. Let a subset H =
(H1, . . . , Hk), n � k < 2n, of C∞(Z) obey the following conditions.

(i) The Hamiltonian vector fields ϑi of functions Hi are complete.
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(ii) The map H : Z → R
k is a submersion with connected and mutually diffeomorphic fibres,

i.e.,

H : Z → N = H(Z) (1)

is a fibred manifold over a connected open subset N ⊂ R
k .

(iii) There exist real smooth functions sij : N → R such that

{Hi,Hj } = sij ◦ H, i, j = 1, . . . , k. (2)

(iv) The matrix function with the entries sij (2) is of constant co-rank m = 2n− k at all points
of N.

Then the following hold.

(I) The fibres of H (1) are diffeomorphic to a toroidal cylinder

R
m−r × T r . (3)

(II) Given a fibre M of H (1), there exists an open saturated neighbourhood UM of it (i.e., a
fibre through a point of UM belongs to UM ), which is a trivial principal bundle with the
structure group (3).

(III) Given standard coordinates (yλ) on the toroidal cylinder (3), the neighbourhood UM is
provided with bundle coordinates (Jλ, pA, qA, yλ), called the generalized action–angle
coordinates, which are the Darboux coordinates of the symplectic form � on UM , i.e.,

� = dJλ ∧ dyλ + dpA ∧ dqA. (4)

In Hamiltonian mechanics, one can think of functions Hi in theorem 1 as being the
integrals of motion of a CIS. Their level surfaces (fibres of H) are invariant submanifolds of
a CIS.

2. Abelian completely and partially integrable systems

The proof of theorem 1 is based on the fact that an invariant submanifold of a noncommutative
CIS is a maximal integral manifold of some Abelian partially integrable Hamiltonian system
[14].

If k = n, theorem 1 provides the above-mentioned extension of the Liouville–Arnold
theorem to Abelian CISs whose invariant submanifolds are noncompact ([38, theorem 6.1],
[15, theorem 1]). Note that the proof of theorem 6.1 [38] differs from that of theorem 1 [15].
It is based on lemma 6.4. The statement of its corollary 6.3 is equivalent to the assumption
of lemmas 6.1–6.4 that an imbedded invariant submanifold Nx ⊂ K admits a Lagrangian
transversal submanifold W ⊂ K through x. Apparently, one can avoid the construction of
T ∗(W) from the proof and, instead of the map γ , consider the map

W × R
n −→ (W × R

n)/Z
m(x) −→ α(W × R

n).

One also need not appeal to the concept of many-valued functions ϕi , but can show that the
fibred manifold α(W ×R

n) → W is a fibre bundle. This is always true if its fibres are tori and,
if m(x) < n, follows from the fact that sections li of W × R

n → W introduced in lemma 6.2
are smooth.

Condition (ii) of theorem 1 implies that the functions {Hλ} are independent on Z, i.e.,

the n-form
n∧ dHλ nowhere vanishes. Accordingly, the Hamiltonian vector fields ϑλ of these

functions are independent on Z, i.e., the multivector field
n∧ ϑλ nowhere vanishes. If k = n,

these vector fields are mutually commutative, and they span a regular involutive n-dimensional
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distribution on Z whose maximal integral manifolds are exactly fibres of the fibred manifold
(1). Thus, every fibre of H (1) admits n-independent complete vector fields, i.e., it is a locally
affine manifold and, consequently, diffeomorphic to a toroidal cylinder.

Considering an Abelian CIS around some compact invariant submanifold, we come to
the Liouville–Arnold theorem (somebody also calls it the Liouville–Mineur–Arnold theorem
[39]). Instead of conditions (i) and (ii) of theorem 1, one can suppose that the integrals
of motion {Hλ} are independent almost everywhere on a symplectic manifold Z, i.e., the

set of points where the exterior form
n∧ dHλ (or, equivalently, the multivector field

n∧ ϑλ)
vanishes is nowhere dense. In this case, connected components of level surfaces of functions
{Hλ} form a singular Stefan foliation F of Z whose leaves are both the maximal integral
manifolds of the singular involutive distribution spanned by the vector fields ϑλ and the orbits
of the pseudogroup G of local diffeomorphisms of Z generated by flows of these vector fields

[36, 37]. Let M be a leaf of F through a regular point z ∈ Z, where
n∧ ϑλ �= 0. It is regular

everywhere because the group G preserves
n∧ ϑλ. If M is compact and connected, there exists

its saturated open neighbourhood UM such that the map H restricted to UM satisfies condition
(ii) of theorem 1, i.e., the foliation F of UM is a fibred manifold in tori T n. Since its fibres
are compact, UM is a bundle [29]. Hence, it contains a saturated open neighbourhood of M,
say again UM , which is a trivial principal bundle with the structure group T n. Providing UM

with the Darboux (action–angle) coordinates (Jλ, α
λ), one uses the fact that there are no linear

functions on a torus T n.
The Poincaré–Lyapounov–Nekhoroshev theorem generalizes the Liouville–Arnold one

to partially integrable systems characterized by k < n independent integrals of motion
Hλ in involution. In this case, one deals with k-dimensional maximal integral manifolds
of the distribution spanned by Hamiltonian vector fields ϑλ of the integrals of motion
Hλ. The Poincaré–Lyapounov–Nekhoroshev theorem imposes a sufficient condition which
Hamiltonian vector fields ϑλ must satisfy in order that their compact maximal integral manifold
M admits an open neighbourhood fibred in tori [17, 18]. Such a condition has been also
investigated in the case of noncommutative vector fields depending on parameters [19].
Extending the Poincaré–Lyapounov–Nekhoroshev theorem to the case of noncompact integral
submanifolds, we in fact assumed from the beginning that these submanifolds form a fibration
[15, 22, 23]. In a more general setting, we have studied the property of a given dynamical
system to be Hamiltonian relative to different Poisson structures [5, 22, 35]. As is well known,
any integrable Hamiltonian system is Hamiltonian relative to different symplectic and Poisson
structures, whose variety has been analysed from different viewpoints [3, 4, 8, 12, 13, 28, 34].
One of the reasons is that bi-Hamiltonian systems have a large supply of integrals of motion.
Here, we refer to our following result on partially integrable systems on a symplectic manifold
([22, theorem 6]).

Theorem 2. Given a 2n-dimensional symplectic manifold (Z,�), let {H1, . . . , Hm},m � n,
be smooth real functions on Z in involution which satisfy the following conditions.

(i) The functions Hλ are everywhere independent.
(ii) Their Hamiltonian vector fields ϑλ are complete.

(iii) These vector fields span a regular distribution whose maximal integral manifolds form a
fibration F of Z with diffeomorphic fibres.

Then the following hold.

(I) All fibres of F are diffeomorphic to a toroidal cylinder (3).
(II) There is an open saturated neighbourhood UM of every fibre M of F which is a trivial

principal bundle with the structure group (3).
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(III) Given standard coordinates (yλ) on the toroidal cylinder (3), the neighbourhood UM is
endowed with the bundle coordinates (Jλ, pA, qA, yλ) such that the symplectic form � is
brought into the form (4).

Theorem 2 provides the above-mentioned generalization of the Poincaré–Lyapounov–
Nekhoroshev theorem to the case of noncompact invariant submanifolds. A geometric aspect
of this generalization is the following. Any fibred manifold whose fibres are diffeomorphic
either to R

r or a compact connected manifold K (e.g., a torus) is a fibre bundle [29]. However,
a fibred manifold whose fibres are diffeomorphic to a product R

r ×K (e.g., a toroidal cylinder
(3)) need not be a fibre bundle (see [20, example 1.2.2]).

3. The proof of theorem 1

Theorem 2 is the final step of the proof of theorem 1. Condition (iv) of theorem 1 implies
that an m-dimensional invariant submanifold of a noncommutative CIS is a maximal integral
manifold of some Abelian partially integrable Hamiltonian system obeying the conditions of
theorem 2. The proof of this fact is based on the following two assertions [14, 27].

Lemma 3. Given a symplectic manifold (Z,�), let H : Z → N be a fibred manifold such
that, for any two functions f, f ′ constant on fibres of H, their Poisson bracket {f, f ′} is so.
Then N is provided with a unique co-induced Poisson structure {, }N such that H is a Poisson
morphism.

Since any function constant on fibres of H is a pull-back of some function on N, the
condition of lemma 3 is satisfied due to item (iii) of theorem 1. Thus, the base N of fibration
(1) is endowed with a co-induced Poisson structure.

Lemma 4. Given a fibred manifold H : Z → N , the following conditions are equivalent:

(i) the rank of the co-induced Poisson structure {, }N on N equals 2 dim N − dim Z,
(ii) the fibres of H are isotropic,

(iii) the fibres of H are maximal integral manifolds of the involutive distribution spanned by
the Hamiltonian vector fields of the pull-back H ∗C of Casimir functions C of the Poisson
algebra on N.

It is readily observed that condition (i) of lemma 4 is satisfied due to assumption (iv) of
theorem 1. It follows that every fibre M of fibration (1) is a maximal integral manifold of the
involutive distribution spanned by the Hamiltonian vector fields υλ of the pull-back H ∗Cλ of
m-independent Casimir functions {C1, . . . , Cm} on an open neighbourhood NM of the point
H(M). Let us put UM = H−1(NM). It is an open saturated neighbourhood of M. Since

H ∗Cλ(z) = (Cλ ◦ H)(z) = Cλ(Hi(z)), z ∈ UM, (5)

the Hamiltonian vector fields υλ on M are linear combinations of Hamiltonian vector fields ϑi

of the functions Hi and, therefore, they are complete on M. Similarly, they are complete on
any fibre of UM and, consequently, on UM . Thus, the conditions of theorem 2 hold on UM .
This completes the proof of theorem 1.

The proof of theorem 1 gives something more. Let {Hi} be the integrals of motion of
a Hamiltonian H. Since (Jλ, pA, qA) are coordinates on N, they are also the integrals of
motion of H. Therefore, the Hamiltonian H depends only on the action coordinates Jλ, and
the equation of motion reads

ẏλ = ∂H
∂Jλ

, Jλ = const, qA = const, pA = const.
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Though the integrals of motion Hi are smooth functions of coordinates (Jλ, q
A, pA), the

Casimir functions

Cλ(Hi(Jµ, qA, pA)) = Cλ(Jµ)

depend only on the action coordinates Jλ. Moreover, a Hamiltonian

H(Jµ) = H(Cλ(Hi(Jµ, qA, pA))

is expressed in the integrals of motion Hi through the Casimir functions (5).
Let us note that, under the assumptions of the Mishchenko–Fomenko theorem, a

noncommutative CIS is also integrable in the Abelian sense. Namely, it admits n-independent
integrals of motion in involution [6]. Under the conditions of theorem 1, such integrals of
motion in involution exist, too. All of them are the pull-back of functions on N. However,
one must justify that they obey condition (iii) of theorem 2 in order to characterize an Abelian
CIS.

4. Example

The original Mishchenko–Fomenko theorem is restricted to CISs whose integrals of motion
{H1, . . . , Hk} form a k-dimensional real Lie algebraG of rank m with the commutation relations

{Hi,Hj } = ch
ijHh, ch

ij = const.

In this case, nonvanishing complete Hamiltonian vector fields ϑi of Hi define a free
Hamiltonian action on Z of some connected Lie group G whose Lie algebra is isomorphic
to G. Orbits of G coincide with k-dimensional maximal integral manifolds of the regular
distribution on Z spanned by Hamiltonian vector fields ϑi [37]. Furthermore, one can treat
H (1) as an equivariant momentum mapping of Z to the Lie co-algebra G∗, provided with
the coordinates xi(H(z)) = Hi(z), z ∈ Z, [23, 24]. In this case, the co-induced Poisson
structure {, }N in lemma 3 coincides with the canonical Lie–Poisson structure on G∗ given by
the Poisson bivector field

w = 1
2ch

ij xh∂
i ∧ ∂j .

Recall that the co-adjoint action of G on G∗ reads εi(xj ) = ch
ij xh, where {εi} is a basis for G.

Casimir functions of the Lie–Poisson structure are exactly the co-adjoint invariant functions
on G∗. They are constant on orbits of the co-adjoint action of G on G∗ which coincide with
leaves of the symplectic foliation of G∗. Given a point z ∈ Z and the orbit Gz of G in Z through
z, the fibration H (1) projects this orbit onto the orbit GH(z) of the co-adjoint action of G in
G∗ through H(z). Moreover, by virtue of item (iii), lemma 4, the inverse image H−1(GH(z))

of GH(z) coincides with the orbit Gz. It follows that any orbit of G in Z is fibred in invariant
submanifolds.

The Mishchenko–Fomenko theorem has been mainly applied to CISs whose integrals of
motion form a compact Lie algebra. Indeed, the group G generated by flows of the Hamiltonian
vector fields is compact, and every orbit of G in Z is compact. Since a fibration of a compact
manifold possesses compact fibres, any invariant submanifold of such a noncommutative CIS
is compact. Therefore, our theorem 1 essentially extends a class of noncommutative CISs
under investigation.

For instance, a spherical top exemplifies a noncommutative CIS whose integrals of motion
make up the compact Lie algebra so(3) with respect to some symplectic structure.

Let us consider a CIS with the Lie algebra G = so(2, 1) of the integrals of motion
{H1,H2,H3} on a four-dimensional symplectic manifold (Z,�), namely,

{H1,H2} = −H3, {H2,H3} = H1, {H3,H1} = H2. (6)
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The rank of this algebra (the dimension of its Cartan subalgebra) equals 1. Therefore, an
invariant submanifold in theorem 1 is M = R, provided with a Cartesian coordinate y. Let
us consider its open saturated neighbourhood UM projected via H : UM → N onto a domain
N ⊂ G∗ in the Lie co-algebra G∗ centred at a point H(M) ∈ G∗ which belongs to an orbit of
the co-adjoint action of maximal dimension 2. A domain N is endowed with the coordinates
(x1, x2, x3) such that the integrals of motion {H1,H2,H3} on UM = N × R, coordinated by
(x1, x2, x3, y), read

H1 = x1, H2 = x2, H3 = x3.

As was mentioned above, the co-induced Poisson structure on N is the Lie–Poisson structure

w = x2∂
3 ∧ ∂1 − x3∂

1 ∧ ∂2 + x1∂
2 ∧ ∂3. (7)

Let us endow N with different coordinates (r, x1, γ ) given by the equalities

r = (
x2

1 + x2
2 − x2

3

)1/2
, x2 = (

r2 − x2
1

)1/2
ch γ, x3 = (

r2 − x2
1

)1/2
sh γ, (8)

where r is a Casimir function on G∗. It is readily observed that the coordinates (8) are the
Darboux coordinates of the Lie–Poisson structure (7), namely,

w = ∂

∂γ
∧ ∂

∂x1
. (9)

Let ϑr be the Hamiltonian vector field of the Casimir function r (8). This vector field is a
combination

ϑr = 1

r
(x1ϑ1 + x2ϑ2 − x3ϑ3)

of the Hamiltonian vector fields ϑi of the integrals of motion Hi . Its flows are invariant
submanifolds. Let y be a parameter along the flows of this vector field, i.e.,

ϑr = ∂

∂y
.

Then the Poisson bivector associated with the symplectic form � on UM is

W = ∂

∂r
∧ ∂

∂y
+

∂

∂γ
∧ ∂

∂x1
. (10)

Accordingly, Hamiltonian vector fields of integrals of motion take the form

ϑ1 = − ∂

∂γ
,

ϑ2 = r
(
r2 − x2

1

)−1/2
ch γ

∂

∂y
+ x1

(
r2 − x2

1

)−1/2
ch γ

∂

∂γ
+

(
r2 − x2

1

)1/2
sh γ

∂

∂x1
,

ϑ3 = r
(
r2 − x2

1

)−1/2
sh γ

∂

∂y
+ x1

(
r2 − x2

1

)−1/2
sh γ

∂

∂γ
+

(
r2 − x2

1

)1/2
ch γ

∂

∂x1
.

Thus, a symplectic annulus (UM,W) around an invariant submanifold M = R is endowed
with the generalized action–angle coordinates (r, x1, γ, y) and possesses the corresponding
noncommutative CIS {r,H1, γ } with the commutation relations

{r,H1} = 0, {r, γ } = 0, {H1, γ } = 1.
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This CIS is related to the original one by the transformations

r = (
H 2

1 + H 2
2 − H 2

3

)1/2
, H2 = (

r2 − H 2
1

)1/2
ch γ, H3 = (

r2 − H 2
1

)1/2
ch γ.

Its Hamiltonian is expressed only in the action variable r.
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[18] Gaeta G 2003 The Poincaré–Nekhoroshev map J. Nonlinear Math. Phys. 10 51–64
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